Scientific automation research unit

AI as an opportunity: why trust in new technologies is so important

The scientific automation research unit is headed up by Prof. Ansgar Trächtler and Dr. Christian Henke.

Our Scientific Automation research unit focuses on the latest methods and technologies in the field of automation. We employ virtual modeling and simulations to account for the increasing complexity of technical systems, so that we can test and perfect our processes in the digital world long before we implement them in reality. Prof. Ansgar Trächtler, director of Fraunhofer IEM, and head of department Dr. Christian Henke give an insight into current research topics in this research unit.

The Scientific Automation research unit brings automation concepts out of the scientific sphere and into business practice. What does that mean in concrete terms?

Prof. Trächtler: When it comes to automation technology, there is a strikingly wide gulf in the area of technology transfer: this is where Fraunhofer IEM comes in! Our task is to help companies build up the know-how they need to work with automation solutions. For small and medium-sized enterprises in particular, freeing up resources and funds for this task is quite a strain. We can provide support in such situations through pragmatic solutions like partial automation.

The topic of trustworthy (i.e. reliable) AI has taken on far greater significance in this research unit. What has created the need to address this issue?

Dr. Henke: Firstly, we are still noticing a lot of research gaps in this area and secondly, we are seeing high levels of demand from industry. Companies want to make use of AI applications. However, if the technology is not stable, the whole idea will be shelved — and much potential wasted. Our goal is to make AI applications more stable and robust. We are also researching the topic of explainable artificial intelligence, which deals with helping us understand and dispel any reservations about these technologies. Companies should recognize the opportunities that AI presents, and use them much more efficiently.

Why should companies be focusing on automation solutions right now in particular?

Dr. Henke:  Events like the global pandemic or current trade crises have naturally exposed the Achilles’ heel of many industries. We are currently working with many different companies to address the question of how we can use automation technology to meet the challenges of supply chain security, production resource optimization, and labor market shortages. At the same time, our solutions are also becoming more relevant to new industries like food technology.

Prof. Trächtler: Another long-term challenge is the topic of sustainability and resource efficiency: in the future, companies will have to be able to provide reliable evidence regarding the carbon footprint created not only by their products, but by their entire value chain. For company strategies, this means that commercial success and public interest will be more closely linked than ever before. Business leaders must develop an awareness of the global and long-term effects of their commercial activities.

Automation technologies can also deliver solutions for tackling the challenge of sustainability. Are there any ongoing projects in this area?

Dr. Henke: In the DENERGETIC project, we are working to develop an intelligent energy management system that will provide the answer to a key question: what is the best possible way to manage energy consumption across an entire residential area in terms of resource efficiency? A holistic approach is important here. The entire energy system, from suppliers to private households, must be considered as a whole.

Prof. Trächtler: Basically, we enter into in-depth dialogues with companies about how they can integrate sustainability into their value creation chain. For example, we look at how they can design their products, materials and production processes in such a way that it’s possible to make repairs and switch out individual parts. We’re very interested in concepts such as digital green twins — together with HELLA, we want to research how energy requirements can be mapped during the product development phase and throughout the entire product life cycle.

Thinking more broadly, is the Scientific Automation research unit looking into any new fields of application?

Dr. Henke: Human-machine interaction is one area where numerous new fields of application are opening up — in the assistance and services sector, for example, or for personal care and applications in the private sphere. Our robotics solutions will enable flexible and resilient production systems. Other extremely exciting areas of research include robotics in construction and the combination of robotics and self-driving transport systems. As you can see, there’s a lot to do!

Research groups

Mechanisches Gerät, an dem Stellschrauben zu sehen sind.
© Fraunhofer IEM

Trusted machine intelligence

The Trusted Machine Intelligence group develops safe and understandable intelligent systems for production and mechatronic products. The activities range from AI-supported control engineering and advanced data analytics for predictive quality and maintenance to self-learning decision support. Combining proven methods of mechatronics and control engineering with data-driven AI approaches ensures special trustworthiness and reliability of the hybrid applications in daily operation. Systems with "Trusted Machine Intelligence" autonomously control their learning behavior, critically assess their own competence, explain decisions and purposively ask humans for help.

Mann mit Schweißbrille, der vor einem Schweißroboter steht.
© Fraunhofer IEM / Wolfram Schroll

Automation technology

The automation technology group develops solutions for cyber-physical systems and Industrie 4.0 that are characterized by adaptability and high levels of automation. The focus is on holistic system development, which includes the hardware as well as the control and regulation technology and produces optimally coordinated subsystems. Condition monitoring systems and innovative actuator concepts are realized in addition to robotics applications and measurement technology solutions. Other topics include the networking of machinery and equipment, and virtual commissioning.

Hexapod in Bewegung, an dem Autoschweinwerfer getestet werden.
© Fraunhofer IEM / Wolfram Schroll

Automotive engineering

The automotive engineering group analyzes and develops vehicle-specific mechatronic systems, functions and components. The employees assist with the development of control units, sensor systems and chassis, among other things, and prepare companies for future challenges. In order to master new technologies in a holistic manner, a systematic approach is taken. Systems are designed and studied both virtually and in real life — from requirements and simulation models to test automation and test bench setups.

Hand, auf dessen Handinnenfläche ein Handy liegt. Auf dem Handy ist das virtuelle 3D-Modell eines Hauses zu sehen.
© sdecoret / Adobe Stock

Smart home

The smart home group develops intelligent systems in the field of home automation. This includes the development of innovative technologies as well as control systems for the integration of cognitive functions. The focus is always on integrating efficient development methods into the development process, which we also refer to as X-in-the-loop technologies. This is how intelligent systems are created in the Smart Home group. These are then efficiently implemented through the systematic application of digital development methods.

Labs and testing facilities

 

Mechatronic Testing Lab

Put your innovations through their paces and test them under reproducible conditions.

 

Robotics Lab

Experience and test robotics and automation solutions for your industrial application.

Selected publications concerning scientific automation

A full list of our publications can be found here

2021

Riepold, Markus; Arian, Bahman; Rozo Vasquez, Julian; Homberg, Werner; Walther, Frank; Trächtler, Ansgar: Model approaches for closed-loop property control for flow forming. Advances in Industrial and Manufacturing Engineering, 3, Nov. 2021
Rozo Vasquez, Julian; Arian, Bahman; Riepold, Markus; Homberg, Werner; Trächtler, Ansgar, Walther, Frank: Magnetic Barkhausen Noise Analysis for Microstructural Effects Separation during Flow Forming of Metastable Austenite 304L. 11th International Workshop NDT in Progress, Okt. 2021
Lenz, Cederic; Henke, Christian; Trächtler, Ansgar: Anomaly detection in hot forming processes using hybrid modeling. 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, Sep. 2021.
Ehlert, Meik; Michael, Jan; Henke, Chrstian, Trächtler, Ansgar; Kalla, Matthias; Bagaber, Bakr; Ponick, Bernd; Mertens, Axel: Connecting Energy Storages from Tool Independent, Signal-flow Oriented FMUs. Proceedings of the International Conference on SMACD and 16th Conference on PRIME, S. 164-167, Jul. 2021
Arian, Bahman; Homberg, Werner; Rozo Vasquez, Julian; Walther, Frank; Riepold, Markus; Trächtler, Ansgar: Forming of metastable austenitic stainless steel tubes with axially graded martensite content by flow-forming. In: 24th International Conference on Material Forming, Apr. 2021.
Poddubnyi, Vladimir I.; Trächtler, Ansgar; Warkentin, Andreas; Henke Christian: Model of a Triangular Caterpillar Drive and Analysis of Vertical Vehicle Dynamics. Russian Engineering Research, 41(3), S. 198-201, Apr. 2021
Bader, Fabian; Bathelt, Lukas; Djakow, Eugen; Homberg, Werner; Henke, Christian; Trächtler, Ansgar: Innovative Measurement Of Stress Superposed Steel Strip For Straightening Machines. In: ESAFORM 2021, 24th International Conference on Material Forming, Apr. 2021
Schütz, Stefan; Rüting, Arne Thorsten; Henke, Christian; Trächtler, Ansgar: Echtzeitfähige Planung optimierter Trajektorien für sensorgeführte, kinematisch redundante Robotersysteme auf einer Industriesteuerung. at-Automatisierungstechnik, 69(3), S. 231-241, Mrz. 2021
Schütz, Stefan; Elsner, Nikolaus; Henke, Christian; Trächtler, Ansgar: Kraftsensitive Kalibriermethode für Industrieroboter. In: Fachtagung VDI MECHATRONIK 2021, Mrz. 2021
Bader, Fabian; Bathelt, Lukas; Djakow, Eugen.; Homberg, Werner; Henke, Christian; Trächtler, Ansgar: Self-optimized, Intelligent Open-Loop-Controlled Steel Strip Straightening Machine for Advanced Formability. In: Forming the Future, S. 3-11, Springer, Cham. Jan. 2021

2020

Rozo Vasquez, Julian; Arian, Bahman; Riepold, Markus; Homberg, Werner; Trächtler, Ansgar; Walther, Frank: Microstructural investigation on phase transformation during flow forming of the metastable austenite AISI 304. In: Metallographie-Tagung, Saarbruecken Germany, S. 75-81, Sep. 2020
Schütz, Stefan; Rüting, Arne Thorsten; Henke, Christian; Trächtler, Ansgar: Echtzeitfähige Planung optimierter Trajektorien für sensorgeführte, kinematisch redundante Mechanismen auf einer Industriesteuerung. In: Entwurf komplexer Automatisierungssysteme (EKA), Mai 2020
Poddubnyi Vladimir I.; Trächtler, Ansgar; Warkentin, Andreas; Henke, Christian: Mechanical and mathematical model of a caterpillar drive with a triangular contour for solving problems of vertical dynamics of a tracked vehicle (in russ.). Vestnik Mashinostroeniya, 12, S. 26-29, 2020

2019

Gräler, Manuel; Wallow, Astrid; Henke, Christian; Trächtler, Ansgar: Assisted setup of forming processes: architecture for the integration of non-adjustable disturbances. Procedia CIRP, 81: S. 1348–1353, Mai 2019
Michael, Jan; Henke, Christian; Trächtler, Ansgar: Decentralized Energy Management for Smart Home System of Systems. In: Syscon 2019 - The 13th Annual IEEE International Systems Conference, The 13th Annual IEEE International Systems Conference, Band 13 , S. 524-531, Apr. 2019 IEEE, IEEE SYSCON
Schütz, Stefan; Rüting, Arne Thorsten; Henke, Christian; Trächtler, Ansgar: Regelung kollaborativer Robotersysteme zur benutzerfreundlichen, flexiblen Fertigung kleiner Losgrößen am Beispiel eines halbautomatischen Schweißvorgangs. In: Fachtagung Mechatronik 2019, Proceeding of the 13. VDI Mechatronik, Band 13 , S. 43-48, Paderborn, Mrz. 2019, VDI Mechatronik
Riepold, Markus; Maslo, Semir; Han, Ge; Henke, Christian; Trächtler, Ansgar: Open-loop linearization for piezoelectric actuator with inverse hysteresis model. Vibroengineering PROCEDIA, 22: S. 47-52, Mrz. 2019
Kruse, Daniel: Teilautomatisierte Parameteridentifikation für die Validierung von Dynamikmodellen im modellbasierten Entwurf mechatronischer Systeme. HNI-Verlagsschriftenreihe, Band 388 , Heinz Nixdorf Institut, Universität Paderborn, 2019
Rüting, Arne Thorsten; Henke, Christian; Trächtler, Ansgar: Umsetzung einer echtzeitfähigen modellprädiktiven Trajektorienplanung für eine mehrachsige Hybridkinematik auf einer Industriesteuerung. at-Automatisierungstechnik, 67(4): S. 326–336 2019

2018

Trächtler, Ansgar: Ressourceneffiziente Selbstoptimierende Wäscherei. Springer Verlag, Springer, https://doi.org/10.1007/978-3-662-56390-8, Dez. 2018
Lankeit, Christopher; Michael, Jan; Henke, Christian; Trächtler, Ansgar: Holistic Requirements for Interdisciplinary Development Processes. In: Proceedings 1st International Workshop on Learning from other Disciplines for Requirements Engineering, IEEE, S. 4-7, Dez. 2018
Drüke, Simon; Bicker, Rainer; Schullter, Bernd; Henke, Christian; Trächtler, Ansgar: Rotordynamic instabilities in washing machines. In: Proceedings of the 10th International Conference on Rotor Dynamics - IFToMM. Vol. 2. International Conference on Rotor Dynamics - IFToMM, S. 383-397, Sep. 2018, Springer Nature Switzerland AG
Rüting, Arne Thorsten; Henke, Christian; Trächtler, Ansgar: Umsetzung einer echtzeitfähigen Mehrgrößenoptimierung auf einer Industriesteuerung. In: EKA 2018 Entwurf komplexer Automatisierungssysteme - Beschreibungsmittel, Methoden, Werkzeuge und Anwendungen, Mai 2018, IFAK - Institut für Automation und Kommunikation e.V.
Pai, Arathi; Riepold, Markus; Trächtler, Ansgar: Model-based precision position and force control of SMA actuators with a clamping application. Mechatronics, 50, S. 303-320, Apr. 2018
Millitzer, Jonathan ; Mayer, Dirk; Jersch, Torben; Henke, Christian; Michael, Jan; Tamm, Christoph; Ranisch, Christopher: Recent Developments in Hardware-in-the-Loop Testing. In: IMAC-XXXVI Conference and Exposition on Structural Dynamics, Band XXXVI , Feb. 2018 Software Engineering Group, Society for Experimental Mechanics, Inc.
Holtkötter, Jens; Michael, Jan; Henke, Christian; Trächtler, Ansgar; Bockholt, Marcos; Möhlenkamp, Andreas; Katter, Michael: Rapid-Control-Prototyping as part of Model-Based Development of Heat Pump Dryers. Procedia Manufacturing, 24: S. 235–242 2018

2017

Henke, Christian; Michael, Jan; Lankeit, Christopher; Trächtler, Ansgar: Virtuelle Inbetriebnahme eines Fertigungszentrums. In: Tag des System Engineering, S. 45-54, Nov. 2017, Gesellschaft für Systems Engineering e.V.
Kohlstedt, Andreas; Traphöner, Phillip; Olma, Simon; Jäker, Karl-Peter; Trächtler, Ansgar: Fast hybrid position / force control of a parallel kinematic load simulator for 6-DOF Hardware-in-the-Loop axle tests. In: 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), S. 694–699, 3. - 7. Jul. 2017 IEEE, IEEE
Poddubnyi, Vladimir I.; Trächtler, Ansgar; Warkentin, Andreas; Krüger, Martin: Innovative Suspensions for Caterpillar Vehicles. Russian Engineering Research, 37(6), S. 485-489, Jun. 2017
Henke, Christian; Michael, Jan; Lankeit, Christopher; Trächtler, Ansgar: A Holistic Approach for Virtual Commissioning of Intelligent Systems. In: Systems Conference 2017, IEEE, Apr. 2017
Rüting, Arne Thorsten; Block, Eduard; Trächtler, Ansgar: Modellprädiktive Vorsteuerung für einen kinematisch redundanten hybridkinematischen Mechanismus im Industrieumfeld. In: Fachtagung Mechatronik 2017, Band 12, S. 250-255, Mrz. 2017, VDI Mechatronik
Michael, Jan; Hellweg, Alina; Henke, Christian; Trächtler, Ansgar: Dynamische Prozessplanung im Smart Home auf Basis von Mutliagentensystemen. In: Fachtagung Mechatronik 2017, Band 12, S. 18-23, Mrz. 2017, VDI Mechatronik
Papenfort, Josef; Bause, Fabian; Frank, Ursula; Strughold, Sebastian; Trächtler, Ansgar; Bielawny, Dirk; Henke, Christian: Scientifc Automation: Hochpräzise Analysen direkt in der Steuerung. In: Wissenschaftsforum Intelligente Technische Systeme (WinTeSys) , 1. Jan. 2017, Verlagsschriftenreihe des Heinz Nixdorf Instituts, Paderborn 
Schweers, Christoph: Adaptive Sigma-Punkte- Filter-Auslegung zur Zustands- und Parameterschätzung an Black-Box- Modellen. Universität Paderborn, Heinz Nixdorf Institut, Regelungstechnik und Mechatronik, Jan. 2017
Poddubnyi, Vladimir I.; Trächtler, Ansgar; Warkentin, Andreas; Krüger, Martin: Mechanisch- mathematisches Modell eines Kettenfahrzeuges für die Entwicklung innovativer Antriebs- und Federungssysteme (auf russ.). Interbranch Scientific and Technical Magazine «Vestnik Mashinostroeniya» 3, S. 46-50, 2017
Ansgar Trächtler

Contact Press / Media

Prof. Dr.-Ing. habil. Ansgar Trächtler

Executive Director | Director Scientific Automation

Fraunhofer Institute for Mechatronic Systems Design IEM
Zukunftsmeile 1
33102 Paderborn

Phone +49 5251 5465-101

Christian Henke

Contact Press / Media

Dr.-Ing. Christian Henke

Head of Department Scientific Automation

Fraunhofer Institute for Mechatronic Systems Design IEM
Zukunftsmeile 1
33102 Paderborn

Phone +49 5251 5465-126